611 W. Union Street
Benson, AZ 85602
(520) 586-0800

member support line
M-F 5pm-8pm
24/7 weekends/holidays

AzCH Nurse Assist Line


611 W. Union Street
Benson, AZ 85602
(520) 586-0800

AzCH Nurse Assist Line


powered by centersite dot net
Health Sciences
Basic InformationLatest News
AHA News: Want a Personalized Diet to Prevent Disease? Nutrition Scientists Are Working on ItScience Brings Shortcut to Spotting 50 Rare Genetic DiseasesAmazon Tribes May Have Lowest Rate of Dementia in the WorldBrain Changes May Fuel 'Long COVID' Anxiety, ConfusionHow COVID-19 Can Change the BrainEven a Little Drinking Ages the Brain: StudyCould Your Blood Type Make COVID Worse?Blood Test Marker Could Gauge Risks After Heart SurgeryGene Tests Often Reveal Unknown RelativesResearchers Map Out Enormous Human Family TreeFour-Legged Friends Could Be Friend to Your BrainScience Pinpoints the Brain's 'Singing Center'Soccer Headers May Disrupt Key 'Pathways' in the BrainScientists Create 'Universal' Donor Organs Where Blood Type Doesn't MatterAre 'Good' Germs in Your Gut Key to a Healthy Brain?Acne's Genetic Secrets Could Bring Better TreatmentsNew Technology Restores Movement After Spinal Cord ParalysisBrain Changes Appear by Middle Age After Years of High Blood PressureBrain's Decline Accelerates in Years After Heart AttackTen Years After Gene Therapy for Leukemia, Doctors Say Patients CuredDid Your Gene Screen Turn Up Dangerous DNA? Study Finds Real Risk Is LowAHA News: Statistics Report Offers Snapshot of the Nation's Brain Health – And a Guide to Protecting ItAHA News: Obesity Harms Brain Health Throughout Life – Yet Scientists Don't Know WhyEven a Little Exercise May Help Slow Parkinson'sScientists ID Genes That Make Your ​FingerprintsCould the 'Alzheimer's Gene' Raise Risks for Severe COVID-19?Genes 'Switched On' Much Earlier in Human Embryos Than ThoughtFormaldehyde in the Workplace Tied to Later Brain IssuesAHA News: Making a Lifetime of Good Brain Health a Global PriorityNFL Players Face 4 Times the Odds of ALSCould Gene Therapy Help Cure Sickle Cell Disease?Toxins in Wildfire Smoke May Make Their Way Into BrainMRI Might Spot Concussion-Linked CTE in Living PatientsCertain Blood Thinners Can Raise Risk of 'Delayed' Bleeding After Head InjuryAHA News: Former NFL Players With Lots of Concussions May Have Higher Stroke RiskMore Years Playing Football, More Brain Lesions on MRI: StudyNew Insights Into What Might Drive Parkinson's DiseaseBrain's 'White Matter' Changes in People With AutismWearable Vibration Device May Ease Parkinson's TremorNeurologists' Group Issues New Treatment Guidelines for Early Parkinson'sGene Therapy Could Be Big Advance Against HemophiliaBlood Test Looks at Patients' Whole Genome to Spot Rare Inherited DiseasesSales of Unproven, Unapproved Stem Cell Therapies Are BoomingHow Bilingual Brains Shift Quickly Between LanguagesMouse Study Offers Hope for Gene Therapy Against Parkinson's DiseaseInsomnia Tied to Raised Risk of AneurysmAHA News: Could the Path to Better Brain Health Involve Better Mouth Care?More Americans Are Dying From Parkinson's Disease: StudyTen Years On, Gene Therapy Still Beating Most Cases of 'Bubble Boy' Immune DiseaseResearchers Find Better Way to Fight Breast Cancer That Has Spread to Brain
Questions and AnswersLinksBook Reviews
Related Topics

Medical Disorders
Mental Disorders
Mental Health Professions

Science Brings Shortcut to Spotting 50 Rare Genetic Diseases

HealthDay News
Updated: Mar 10th 2022

new article illustration

THURSDAY, March 10, 2022 (HealthDay News) -- Scientists have developed a single test that can rapidly detect a collection of rare genetic diseases -- an advance they hope will shorten the "diagnostic odyssey" that people with these conditions can face.

The test diagnoses conditions known collectively as "STR-expansion" disorders, which include more than 50 genetic diseases that affect the brain, nervous system and muscles.

Some of the better known are Huntington's disease and Fragile X syndrome, but there are many others -- often with overlapping signs and symptoms that make them tough to distinguish.

They include, among others, inherited ataxias, which gradually impair a person's hand coordination, speech and ability to walk; myotonic dystrophies, which cause progressive weakness in the muscles that move the body, and sometimes the heart and muscles involved in breathing and digestion; and inherited myoclonic epilepsies -- seizure disorders that cause the body muscles to contract and "jerk."

Right now, testing for STR-expansion disorders is "hit or miss," said researcher Dr. Kishore Kumar, of the Garvan Institute of Medical Research in Sydney, Australia.

"When patients present with symptoms, it can be difficult to tell which of these 50-plus genetic expansions they might have, so their doctor must decide which genes to test for based on the person's symptoms and family history," Kumar said in an institute statement.

For some, he said, that can lead to a years-long "odyssey" of testing to get an answer.

Enter the new test, based on nanopore technology, which allows rapid "reads" of long stretches of DNA. That's key in diagnosing STR-expansion disorders because the conditions involve abnormally long "repeats" in the chemical letters that make up DNA.

In a study of 25 patients with known STR-expansion disorders, Kumar and his colleagues found that the test correctly diagnosed all of them.

The goal, the researchers said, is to make the test available for everyday practice in the next two to five years.

The findings were published online March 4 in the journal Science Advances.

"This is significant," said Dr. Hui Zhang, a geneticist at Yale School of Medicine who was not involved in the research.

The ability of the test to do "long reads" of DNA, she said, is the key piece.

Right now, Zhang said, the process of testing for STR-expansion disorders one by one is time-consuming and can become very expensive.

There are "next-generation" genetic testing techniques, including whole-genome and whole-exome sequencing. Whole-genome sequencing scours all of a person's DNA to try to identify disease-causing mutations; whole-exome sequencing focuses on the portion of a person's DNA that contains instructions for making proteins.

But, Zhang explained, those techniques do "short reads" (looking at shorter lengths of DNA), which means they miss the very long letter repeats that mark STR-expansion disorders.

"This [new test] is complementary to short reads -- it fills in a blank," Zhang said.

Heidi Rehm is vice president of laboratory genetics at the American College of Medical Genetics and Genomics, and a professor of pathology at Massachusetts General Hospital in Boston.

Rehm said that getting a genetic diagnosis -- for STR-expansion disorders or any rare disease -- is critical not only for the person with the disorder, but for the family, too.

The new test is a good one, Rehm said. The broader questions relate to how it could eventually be incorporated into real-world practice.

It's not clear, for example, if it should be a stand-alone test, Rehm said, or done as part of whole-genome or whole-exome sequencing.

There is also the question of cost, Rehm said, which could be an obstacle for labs in adopting the test.

According to Kumar's team, the nanopore sequencing device is the size of a stapler and costs around $1,000.

But there is also the cost of the sequencing and analysis, Zhang said, which is unclear.

She also noted there will be cases where the new test could be "too big" -- if symptoms and family history point to a likely culprit, and traditional testing can be done.

STR-expansion disorders cannot be cured. But a quicker diagnosis can help doctors detect and treat the various complications these conditions can cause, Kumar's team said.

More information

The U.S. National Institutes of Health has more on rare disease diagnosis.

SOURCES: Heidi Rehm, PhD, vice president, laboratory genetics and member, board of directors, American College of Medical Genetics and Genomics, Bethesda, Md., and professor, pathology, Massachusetts General Hospital, Boston; Hui Zhang, MD, PhD, associate professor, genetics and pediatrics, co-director, DNA Diagnostic Lab, Yale School of Medicine, New Haven, Conn.; Garvan Institute of Medical Research, news release, March 4, 2022; Science Advances, March 4, 2022, online