611 W. Union Street
Benson, AZ 85602
(520) 586-0800

member support line
M-F 5pm-8pm
24/7 weekends/holidays

AzCH Nurse Assist Line


611 W. Union Street
Benson, AZ 85602
(520) 586-0800

AzCH Nurse Assist Line


powered by centersite dot net
Health Sciences
Basic InformationLatest News
AHA News: Dr. Dre Recovering From a Brain Aneurysm. What Is That?Can 2 Nutrients Lower Your Risk for Parkinson's?New Clues to How Cancers Originate in the BrainBrain May Age Faster After Spinal Cord InjuryScans Reveal How COVID-19 Can Harm the BrainWhat Loneliness Looks Like in the BrainNeurologists Much Tougher to Find in Rural AmericaCOVID-19 Survival Declines When Brain Affected: StudyAs Testing Costs Rise, Neurology Patients May Skip ScreeningGene Therapy Shows No Long-Term Harm in Animals: StudyCould Gene Therapy Cure Sickle Cell Disease? Two New Studies Raise HopesCocoa Might Give Your Brain a Boost: StudyLockdown Loneliness Could Worsen Parkinson's SymptomsChildhood Lead Exposure Tied to Brain Changes in Middle AgeStaying Social Can Boost Healthy 'Gray Matter' in Aging BrainsDNA Analysis Might Reveal Melanoma RiskGenetics Might Explain Some Cases of Cerebral PalsyDiabetes Drug Metformin May Protect the Aging BrainNew Research Links Another Gene to Alzheimer's RiskYour Sex Affects Your Genes for Body Fat, Cancer, Birth WeightExperimental Drug Shows Promise Against ALSCould Gene Therapy Stem the Damage of Parkinson's?Genetic Research May Help Identify Causes of StillbirthBlood Test Heralds New Era in Alzheimer's DiagnosisMore Clues to the Genes Behind Hearing LossScientists Move Closer to Mapping Entire Human GenomeBlood Test May Reveal Concussion Severity With Accuracy of Spinal TapDeep Brain Stimulation May Slow Parkinson's, Study FindsStroke, Confusion: COVID-19 Often Impacts the Brain, Study ShowsYour Genes May Affect How You'll Heal If WoundedEven Without Concussion, Athletes' Brains Can Change After Head Jolts: StudyHealthDay In-Depth
The AI Revolution: For Patients, Promise and Challenges Ahead">HealthDay In-Depth
The AI Revolution: For Patients, Promise and Challenges Ahead
HealthDay In-Depth
The AI Revolution: Giving Docs a Diagnostic Assist">HealthDay In-Depth
The AI Revolution: Giving Docs a Diagnostic Assist
Blood Test Might Predict Worsening MSKeto Diet Might Change Your Gut in More Ways Than OneParkinson's Patient Improving After First-Ever Stem Cell TherapyKey Areas of the Brain Triggered in Recent Heart Attack SurvivorsFirst Good Evidence That Brain Hits 'Replay' While You SleepSome NFL Players May Be Misdiagnosed With Brain Disease: StudyGreenhouse Gases Bad for Your BrainTransplanted Skin Stem Cells Help Blind Mice See LightBrain Plaques Signal Alzheimer's Even Before Other Symptoms Emerge: Study'It's Like You Have a Hand Again': New Prosthetic Gets Closer to the Real ThingLosing a Spouse Could Speed Brain's DeclinePaddles Against Parkinson's: Ping Pong Might Ease SymptomsIn a First, Doctors Use Robotics to Treat Brain AneurysmSkiers Study Suggests Fitness May Stave Off Parkinson'sCRISPR Gene Editing Creates 'Designer' Immune Cells That Fight CancerGene Variant Ups Dementia Risk in Parkinson's Patients: StudyGene Variation May Protect Against Alzheimer's: Study
Questions and AnswersLinksBook Reviews
Related Topics

Medical Disorders
Mental Disorders
Mental Health Professions

New Clues to How Cancers Originate in the Brain

HealthDay News
by Cara Murez
Updated: Jan 6th 2021

new article illustration

WEDNESDAY, Jan. 6, 2021 (HealthDay News) -- Researchers say a new study may offer hope for future patients with glioblastoma, an aggressive brain cancer. It's the brain tumor that killed Senators John McCain and Ted Kennedy.

Investigators from the University of Toronto discovered that the healing process after a brain injury could spur tumor growth if new cells meant to replace those lost in the injury were derailed by mutations.

The findings could lead to new therapies for glioblastoma patients, according to the researchers. Glioblastoma patients currently have limited treatment options and typically survive only 15 months after diagnosis, on average.

"Our data suggest that the right mutational change in particular cells in the brain could be modified by injury to give rise to a tumor," said lead researcher Dr. Peter Dirks, head of the Division of Neurosurgery and a senior scientist in the Developmental and Stem Cell Biology program at Toronto's Hospital for Sick Children.

"Glioblastoma can be thought of as a wound that never stops healing," Dirks said in a university news release. "We're excited about what this tells us about how cancer originates and grows, and it opens up entirely new ideas about treatment by focusing on the injury and inflammation response."

The researchers applied the latest RNA sequencing and machine-learning technologies to map the molecular makeup of glioblastoma stem cells.

They found new subpopulations of glioblastoma stem cells that had the molecular hallmarks of inflammation and were co-mingled with other cancer stem cells inside patients' tumors.

Dirks said this suggests that some glioblastomas start to form when the normal tissue healing process gets derailed by mutations, possibly even many years before a patient has symptoms.

A brain injury can include trauma, infection or stroke. Once a mutant cell becomes engaged in wound healing, it cannot stop multiplying because the normal controls are broken.

"The goal is to identify a drug that will kill the glioblastoma stem cells," said Gary Bader, a professor of molecular genetics in the university's Donnelly Centre for Cellular and Biomolecular Research. "But we first needed to understand the molecular nature of these cells in order to be able to target them more effectively."

Researchers collected glioblastoma stem cells from 26 patients' tumors. They expanded them in the lab, analyzing nearly 70,000 cells by single-cell RNA sequencing. This detects what genes are switched on in individual cells.

The data confirmed that each tumor contains multiple subpopulations of molecularly distinct cancer stem cells. That makes recurrence likely.

Researchers identified two molecular states -- "developmental" or "injury response" -- or somewhere between the two. They said the injury response state was a surprise. Immune signatures in the injury response were only picked up by new single-cell technology after being missed by older methods.

It was also determined that each tumor was biased either toward the developmental or the injury response end of the gradient and the two states were vulnerable in different ways.

"We're now looking for drugs that are effective on different points of this gradient," said Trevor Pugh, senior scientist at the Princess Margaret Cancer Centre. "There's a real opportunity here for precision medicine -- to dissect patients' tumors at the single cell level and design a drug cocktail that can take out more than one cancer stem cell subclone [a clone selected from a clone, especially after a mutation occurs] at the same time."

The research was published Jan. 4 in the journal Nature Cancer.

More information

The American Association of Neurological Surgeons has more on glioblastoma.

SOURCE: University of Toronto, news release, Jan. 4, 2021