611 W. Union Street
Benson, AZ 85602
(520) 586-0800

member support line
M-F 5pm-8pm
24/7 weekends/holidays

AzCH Nurse Assist Line


611 W. Union Street
Benson, AZ 85602
(520) 586-0800

AzCH Nurse Assist Line


powered by centersite dot net
Health Sciences
Basic InformationLatest News
Ten Years On, Gene Therapy Still Beating Most Cases of 'Bubble Boy' Immune DiseaseResearchers Find Better Way to Fight Breast Cancer That Has Spread to BrainShape, Size of Brain Arteries May Predict Stroke RiskTracking Key Protein Helps Predict Outcomes in TBI PatientsSigns of Early Alzheimer's May Be Spotted in Brain StemCould Cholesterol Help Drive Alzheimer's Disease?Insights Into Genes Driving Epilepsy Could Help With TreatmentFewer American Adults Are Getting Malignant Brain TumorsLong-Term Outlook for Most With Serious Brain Injury Is Better Than ThoughtStroke Prevented His Speech, But Brain Implant Brought It BackWHO Calls for Global Registry of Human Genome EditingScientists Track Spirituality in the Human BrainNew Insights Into How Eating Disorders Alter the BrainGene Differences Could Have Black Patients Undergoing Unnecessary BiopsiesCRISPR Therapy Fights Rare Disease Where Protein Clogs OrgansNew Genetic Insights Into Cause of ALSDeep Brain Stimulation Therapy May Help Parkinson's Patients Long TermAmazon Tribe Could Hold Key to Health of Aging BrainsMan Blind for 40 Years Regains Some Sight Through Gene TherapyNew Insights Into Treating Mild Head Injuries'Ghosts and Guardian Angels': New Insights Into Parkinson's HallucinationsHigher Education Won't Help Preserve the Aging Brain: StudyScientists Create Embryos With Cells From Monkeys, Humans'Game of Thrones' Study Reveals the Power of Fiction on the MindScientists Create Human Tear Glands That Cry in the LabAHA News: How Grief Rewires the Brain and Can Affect Health – and What to Do About ItCould Taking a Swing at Golf Help Parkinson's Patients?Autopsy Study May Explain Why Some COVID Survivors Have 'Brain Fog'Gene Study Probes Origins of Addison's DiseaseCould a Common Prostate Drug Help Prevent Parkinson's?AHA News: Hormones Are Key in Brain Health Differences Between Men and WomenNerve Drug Might Curb Spinal Cord Damage, Mouse Study SuggestsIs There a 'Risk-Taking' Center in the Brain?AHA News: Dr. Dre Recovering From a Brain Aneurysm. What Is That?Can 2 Nutrients Lower Your Risk for Parkinson's?New Clues to How Cancers Originate in the BrainBrain May Age Faster After Spinal Cord InjuryScans Reveal How COVID-19 Can Harm the BrainWhat Loneliness Looks Like in the BrainNeurologists Much Tougher to Find in Rural AmericaCOVID-19 Survival Declines When Brain Affected: StudyAs Testing Costs Rise, Neurology Patients May Skip ScreeningGene Therapy Shows No Long-Term Harm in Animals: StudyCould Gene Therapy Cure Sickle Cell Disease? Two New Studies Raise HopesCocoa Might Give Your Brain a Boost: StudyLockdown Loneliness Could Worsen Parkinson's SymptomsChildhood Lead Exposure Tied to Brain Changes in Middle AgeDeep Brain Stimulation May Hold Promise in Alzheimer'sNeurology News Feed
Questions and AnswersLinksBook Reviews
Related Topics

Medical Disorders
Mental Disorders
Mental Health Professions

New Clues to How Cancers Originate in the Brain

HealthDay News
by Cara Murez
Updated: Jan 6th 2021

new article illustration

WEDNESDAY, Jan. 6, 2021 (HealthDay News) -- Researchers say a new study may offer hope for future patients with glioblastoma, an aggressive brain cancer. It's the brain tumor that killed Senators John McCain and Ted Kennedy.

Investigators from the University of Toronto discovered that the healing process after a brain injury could spur tumor growth if new cells meant to replace those lost in the injury were derailed by mutations.

The findings could lead to new therapies for glioblastoma patients, according to the researchers. Glioblastoma patients currently have limited treatment options and typically survive only 15 months after diagnosis, on average.

"Our data suggest that the right mutational change in particular cells in the brain could be modified by injury to give rise to a tumor," said lead researcher Dr. Peter Dirks, head of the Division of Neurosurgery and a senior scientist in the Developmental and Stem Cell Biology program at Toronto's Hospital for Sick Children.

"Glioblastoma can be thought of as a wound that never stops healing," Dirks said in a university news release. "We're excited about what this tells us about how cancer originates and grows, and it opens up entirely new ideas about treatment by focusing on the injury and inflammation response."

The researchers applied the latest RNA sequencing and machine-learning technologies to map the molecular makeup of glioblastoma stem cells.

They found new subpopulations of glioblastoma stem cells that had the molecular hallmarks of inflammation and were co-mingled with other cancer stem cells inside patients' tumors.

Dirks said this suggests that some glioblastomas start to form when the normal tissue healing process gets derailed by mutations, possibly even many years before a patient has symptoms.

A brain injury can include trauma, infection or stroke. Once a mutant cell becomes engaged in wound healing, it cannot stop multiplying because the normal controls are broken.

"The goal is to identify a drug that will kill the glioblastoma stem cells," said Gary Bader, a professor of molecular genetics in the university's Donnelly Centre for Cellular and Biomolecular Research. "But we first needed to understand the molecular nature of these cells in order to be able to target them more effectively."

Researchers collected glioblastoma stem cells from 26 patients' tumors. They expanded them in the lab, analyzing nearly 70,000 cells by single-cell RNA sequencing. This detects what genes are switched on in individual cells.

The data confirmed that each tumor contains multiple subpopulations of molecularly distinct cancer stem cells. That makes recurrence likely.

Researchers identified two molecular states -- "developmental" or "injury response" -- or somewhere between the two. They said the injury response state was a surprise. Immune signatures in the injury response were only picked up by new single-cell technology after being missed by older methods.

It was also determined that each tumor was biased either toward the developmental or the injury response end of the gradient and the two states were vulnerable in different ways.

"We're now looking for drugs that are effective on different points of this gradient," said Trevor Pugh, senior scientist at the Princess Margaret Cancer Centre. "There's a real opportunity here for precision medicine -- to dissect patients' tumors at the single cell level and design a drug cocktail that can take out more than one cancer stem cell subclone [a clone selected from a clone, especially after a mutation occurs] at the same time."

The research was published Jan. 4 in the journal Nature Cancer.

More information

The American Association of Neurological Surgeons has more on glioblastoma.

SOURCE: University of Toronto, news release, Jan. 4, 2021