611 W. Union Street
Benson, AZ 85602
(520) 586-0800

LaFrontera
member support line
1-520-279-5737
M-F 5pm-8pm
24/7 weekends/holidays

AzCH Nurse Assist Line
1-866-495-6735

NAZCARE Warm Line
1-888-404-5530



SEABHS
611 W. Union Street
Benson, AZ 85602
(520) 586-0800

AzCH Nurse Assist Line
1-866-495-6735

NAZCARE Warm Line
1-888-404-5530


powered by centersite dot net
Health Sciences
Resources
Basic InformationLatest News
AHA News: Dr. Dre Recovering From a Brain Aneurysm. What Is That?Can 2 Nutrients Lower Your Risk for Parkinson's?New Clues to How Cancers Originate in the BrainBrain May Age Faster After Spinal Cord InjuryScans Reveal How COVID-19 Can Harm the BrainWhat Loneliness Looks Like in the BrainNeurologists Much Tougher to Find in Rural AmericaCOVID-19 Survival Declines When Brain Affected: StudyAs Testing Costs Rise, Neurology Patients May Skip ScreeningGene Therapy Shows No Long-Term Harm in Animals: StudyCould Gene Therapy Cure Sickle Cell Disease? Two New Studies Raise HopesCocoa Might Give Your Brain a Boost: StudyLockdown Loneliness Could Worsen Parkinson's SymptomsChildhood Lead Exposure Tied to Brain Changes in Middle AgeStaying Social Can Boost Healthy 'Gray Matter' in Aging BrainsDNA Analysis Might Reveal Melanoma RiskGenetics Might Explain Some Cases of Cerebral PalsyDiabetes Drug Metformin May Protect the Aging BrainNew Research Links Another Gene to Alzheimer's RiskYour Sex Affects Your Genes for Body Fat, Cancer, Birth WeightExperimental Drug Shows Promise Against ALSCould Gene Therapy Stem the Damage of Parkinson's?Genetic Research May Help Identify Causes of StillbirthBlood Test Heralds New Era in Alzheimer's DiagnosisMore Clues to the Genes Behind Hearing LossScientists Move Closer to Mapping Entire Human GenomeBlood Test May Reveal Concussion Severity With Accuracy of Spinal TapDeep Brain Stimulation May Slow Parkinson's, Study FindsStroke, Confusion: COVID-19 Often Impacts the Brain, Study ShowsYour Genes May Affect How You'll Heal If WoundedEven Without Concussion, Athletes' Brains Can Change After Head Jolts: StudyHealthDay In-Depth
The AI Revolution: For Patients, Promise and Challenges Ahead">HealthDay In-Depth
The AI Revolution: For Patients, Promise and Challenges Ahead
HealthDay In-Depth
The AI Revolution: Giving Docs a Diagnostic Assist">HealthDay In-Depth
The AI Revolution: Giving Docs a Diagnostic Assist
Blood Test Might Predict Worsening MSKeto Diet Might Change Your Gut in More Ways Than OneParkinson's Patient Improving After First-Ever Stem Cell TherapyKey Areas of the Brain Triggered in Recent Heart Attack SurvivorsFirst Good Evidence That Brain Hits 'Replay' While You SleepSome NFL Players May Be Misdiagnosed With Brain Disease: StudyGreenhouse Gases Bad for Your BrainTransplanted Skin Stem Cells Help Blind Mice See LightBrain Plaques Signal Alzheimer's Even Before Other Symptoms Emerge: Study'It's Like You Have a Hand Again': New Prosthetic Gets Closer to the Real ThingLosing a Spouse Could Speed Brain's DeclinePaddles Against Parkinson's: Ping Pong Might Ease SymptomsIn a First, Doctors Use Robotics to Treat Brain AneurysmSkiers Study Suggests Fitness May Stave Off Parkinson'sCRISPR Gene Editing Creates 'Designer' Immune Cells That Fight CancerGene Variant Ups Dementia Risk in Parkinson's Patients: StudyGene Variation May Protect Against Alzheimer's: Study
Questions and AnswersLinksBook Reviews
Related Topics

Medical Disorders
Mental Disorders
Mental Health Professions

'It's Like You Have a Hand Again': New Prosthetic Gets Closer to the Real Thing

HealthDay News
by -- Robert Preidt
Updated: Mar 5th 2020

new article illustration

WEDNESDAY, March 4, 2020 (HealthDay News) -- A brain-controlled robotic arm gives users precise hand control that enables them to do more complicated things intuitively than they could with a conventional prosthetic, researchers say.

"It's like you have a hand again," said study participant Joe Hamilton, who lost his arm in a fireworks accident in 2013. "You can pretty much do anything you can do with a real hand with that hand. It brings you back to a sense of normalcy."

According to the University of Michigan team behind the technology, the new hand uses the patient's own muscle tissue to amplify normally faint signals from arm nerves, pumping them up to a much higher level.

That application in signaling allows users to achieve real-time, intuitive, finger-level control of the artificial limb.

"You can make a prosthetic hand do a lot of things, but that doesn't mean that the person is intuitively controlling it," explained research co-leader Cindy Chestek, an associate professor of biomedical engineering at the university. "The difference is when it works on the first try, just by thinking about it, and that's what our approach offers.

"This worked the very first time we tried it," Chestek said in a university news release. "There's no learning for the participants. All of the learning happens in our algorithms. That's different from other approaches."

The findings are in a paper published March 4 in the journal Science Translational Medicine, which described the results of four people who tested out the new Mobius Bionics LUKE arm.

Participants were quickly able to pick up blocks with a pincer grasp; move their thumb in a continuous motion (rather than being limited to two positions); lift ball-like objects, and even play a version of Rock, Paper, Scissors called Rock, Paper, Pliers.

Patient Karen Sussex, of Jackson, Mich., was one participant. In a university video, she called the new device "a really good step into the future, a really good way to move forward, for not only for me but for other people."

Research co-leader Dr. Paul Cederna, professor of plastic surgery and professor of biomedical engineering, agreed.

"We have developed a technique to provide individual finger control of prosthetic devices using the nerves in a patient's residual limb," he said. "With it, we have been able to provide some of the most advanced prosthetic control that the world has seen."

A clinical trial is ongoing and the researchers are seeking new participants.

"So many times, the things we do in a research lab add to the knowledge in the field, but you never actually get a chance to see how that impacts a person," Cederna said. "When you can sit and watch one person with a prosthetic device do something that was unthinkable 10 years ago, it is so gratifying. I'm so happy for our participants, and even more happy for all the people in the future that this will help."

For Hamilton, the future looks a bit brighter.

"It brought back into my mind the thought of, well, if I had something like this I could actually be out working, without risking hurting myself," he said.

The University of Michigan put together this video further explaining the technology:

More information

The Amputee Coalition has more on prosthetics.