611 W. Union Street
Benson, AZ 85602
(520) 586-0800

LaFrontera
member support line
1-520-279-5737
M-F 5pm-8pm
24/7 weekends/holidays

AzCH Nurse Assist Line
1-866-495-6735

NAZCARE Warm Line
1-888-404-5530



SEABHS
611 W. Union Street
Benson, AZ 85602
(520) 586-0800

AzCH Nurse Assist Line
1-866-495-6735

NAZCARE Warm Line
1-888-404-5530


powered by centersite dot net

Getting Started
Here are some forms to get started. These can be printed and brought with you so that you can pre-fill out some known info ahead of time. More...


Health Sciences
Resources
Basic InformationLatest News
Deep Brain Stimulation May Slow Parkinson's, Study FindsStroke, Confusion: COVID-19 Often Impacts the Brain, Study ShowsYour Genes May Affect How You'll Heal If WoundedEven Without Concussion, Athletes' Brains Can Change After Head Jolts: StudyHealthDay In-Depth
The AI Revolution: For Patients, Promise and Challenges Ahead">HealthDay In-Depth
The AI Revolution: For Patients, Promise and Challenges Ahead
HealthDay In-Depth
The AI Revolution: Giving Docs a Diagnostic Assist">HealthDay In-Depth
The AI Revolution: Giving Docs a Diagnostic Assist
Blood Test Might Predict Worsening MSKeto Diet Might Change Your Gut in More Ways Than OneParkinson's Patient Improving After First-Ever Stem Cell TherapyKey Areas of the Brain Triggered in Recent Heart Attack SurvivorsFirst Good Evidence That Brain Hits 'Replay' While You SleepSome NFL Players May Be Misdiagnosed With Brain Disease: StudyGreenhouse Gases Bad for Your BrainTransplanted Skin Stem Cells Help Blind Mice See LightBrain Plaques Signal Alzheimer's Even Before Other Symptoms Emerge: Study'It's Like You Have a Hand Again': New Prosthetic Gets Closer to the Real ThingLosing a Spouse Could Speed Brain's DeclinePaddles Against Parkinson's: Ping Pong Might Ease SymptomsIn a First, Doctors Use Robotics to Treat Brain AneurysmSkiers Study Suggests Fitness May Stave Off Parkinson'sCRISPR Gene Editing Creates 'Designer' Immune Cells That Fight CancerGene Variant Ups Dementia Risk in Parkinson's Patients: StudyGene Variation May Protect Against Alzheimer's: StudyYoung-Onset Parkinson's May Start in the Womb, New Research SuggestsNew Gene Study Unravels Cancer's SecretsDoes Size Matter? Volume of Brain Area Not Always Tied to Memory, ThinkingGene Test Might Spot Soccer Players at High Risk for Brain TroubleSevere Deprivation in Childhood Has Lasting Impact on Brain SizeIn the Future, Could Exercise's Benefits Come in a Pill?Could Brain Scans Spot Children's Mood, Attention Problems Early?Brain Damage Changes Over Time in Boxers, MMA FightersSpecial 'Invisible' Dye Could Serve as Skin's Vaccination RecordCancer Drug Shows Promise for Parkinson's Patients'Smart' Contact Lenses Might Also Monitor Eye HealthCould Obesity Alter a Child's Brain Structure?Playing Sports Might Sharpen Your HearingAntarctic Study Shows Isolation, Monotony May Change the Human BrainCould MS Have Links to the Herpes Virus?Ultrasound Treatment Might Ease Parkinson's TremorsAnimal Study Offers Hope for Treating Traumatic Brain InjuriesA Gene Kept One Woman From Developing Alzheimer's -- Could It Help Others?Could AI Beat Radiologists at Spotting Bleeds in the Brain?Pro Soccer Players More Likely to Develop Dementia: StudyExtinct Human Species Passed on Powerful Immune System GeneScientists ID Genes Tied to Left-HandednessScientists Creating Gene Map of Human 'Microbiome'New DNA Blood Test May Help Guide Breast Cancer TreatmentFootball Head Trauma Linked Again to Long-Term Brain DamageMore 'Buyer Beware' Warnings for Unregulated Stem Cell Clinics3-D Printers Might Someday Make Replacement Hearts
Questions and AnswersLinksBook Reviews
Related Topics

Medical Disorders
Mental Disorders
Mental Health Professions

3-D Printers Might Someday Make Replacement Hearts

HealthDay News
by By Amy Norton
HealthDay Reporter
Updated: Aug 1st 2019

new article illustration

THURSDAY, Aug. 1, 2019 (HealthDay News) -- Scientists say they have taken an important step forward in creating 3-D printed hearts -- with the ultimate goal of making replacement tissue for organs and body parts damaged by disease or injury.

The 3-D printing process builds three-dimensional objects based on a computer model. Unlike traditional printing onto a flat surface, the machines churn out various materials -- plastics, metals, ceramics -- layer by layer.

The technology is used in various industries, and in recent years researchers have been developing an offshoot: 3-D "bioprinting." The hope is to eventually have the capacity to produce custom-made replacement tissue, or even whole organs, for patients.

Of course, the human body is far more complicated than a consumer product. Not only does printed tissue need structure, it needs to be permeated by blood vessels, nerves and other elements that keep it alive.

Researchers are years away from bioprinting functional organs that can be transplanted into humans, said lead researcher Andrew Lee.

But he and his colleagues at Carnegie Mellon University in Pittsburgh are reporting a key step on that long road. They've developed a new bioprinting method capable of creating parts of the human heart out of collagen.

Collagen is the most abundant protein in the body, and it's a critical part of the "extracellular matrix" -- a network of molecules that surround your body cells, giving them structure and chemical support.

The new bioprinting strategy helps address a major obstacle: Printing living cells and soft biological material, like collagen, is difficult. Collagen starts out as a fluid, and would just end up in a puddle if bioprinted by itself, the researchers explained. But by supporting the collagen with a gel that can be removed after the bioprinting is done, the collagen has time to solidify.

The technique is dubbed FRESH 2, and with it the researchers were able to reliably print tiny collagen fibers, of 20 micrometers in diameter -- an order of magnitude smaller than the previous 250 micrometers with an earlier version of the technology. The approach also allowed them to solidify the collagen with precise control -- creating tissue "architectures" that can be embedded with living cells.

When the researchers printed the collagen "bioink" with human heart-muscle cells, they were able to build a small model of the heart's left ventricle -- its main pumping chamber. Over a number of days, the ventricles showed the capacity to contract.

The researchers also printed a heart valve that could open and close, and a model of a newborn heart.

"We're nowhere near a functional heart that you can put into a human," Lee stressed. "But this is an important step forward."

That point was echoed by Lauren Black, an associate professor of biomedical engineering at Tufts University, in Medford, Mass.

"This is a pretty significant leap," said Black, who wrote an editorial published with the study in the Aug. 2 issue of Science.

He noted that the approach can not only print collagen, but also other important biological substances, like fibrinogen and hyaluronic acid.

The long-range hope for 3-D bioprinting is to generate tissue customized for individual patients. That, Black explained, would be done with the help of a patient's own stem cells: Cells could be taken from the skin and genetically reprogrammed into a state similar to embryonic stem cells -- giving them the potential to mature into any type of body tissue.

Donor organs are in short supply, Black pointed out, and even when a patient receives one, the immune system will reject it without immune-suppressing drugs. 3-D bioprinting could help address both of those problems, he said.

But that's a long way off. In the nearer term, Black said, bioprinted human tissue could be used in lab research -- for testing new drugs, and possibly replacing some of the research currently done on animals.

Lee agreed. He also noted that the current study used the heart for "proof of concept." But the FRESH approach could be used to build a range of organ systems, he said.

Here's a short video of the 3-D printed heart valve in action:

More information

The American Society for Cell Biology has more on 3-D bioprinting.