611 W. Union Street
Benson, AZ 85602
(520) 586-0800

Health Choice Integrated Care crisis Line
1-877-756-4090

AzCH Nurse Assist Line
1-866-495-6735

NAZCARE Warm Line
1-888-404-5530



SEABHS
611 W. Union Street
Benson, AZ 85602
(520) 586-0800

AzCH Nurse Assist Line
1-866-495-6735

NAZCARE Warm Line
1-888-404-5530


powered by centersite dot net

Getting Started
Here are some forms to get started. These can be printed and brought with you so that you can pre-fill out some known info ahead of time. More...


Health Sciences
Resources
Basic InformationLatest News
How to Protect Your DNA for Big Health BenefitsBones Help Black People Keep Facial Aging at BayGene Test Might Someday Gauge Your Heart Attack RiskYour Gut Bacteria Could Affect Your Response to MedsIt's Never Too Late for New Brain CellsSensor-Laden Glove Helps Robotic Hands 'Feel' ObjectsAn Antibiotic Alternative? Using a Virus to Fight BacteriaBrain Sharpens the Hearing of the Blind, Study FindsMind-Reading Tech Could Bring 'Synthetic Speech' to Brain-Damaged PatientsCan Obesity Shrink Your Brain?Will You Get Fat? Genetic Test May TellMagnet 'Zap' to the Brain Might Jumpstart Aging MemoryWhy More Patients Are Surviving an AneurysmIsraeli Team Announces First 3D-Printed Heart Using Human CellsPoverty Could Leave Its Mark on GenesNFL Retirees Help Scientists Develop Early Test for Brain Condition CTEBrain 'Zap' Might Rejuvenate Aging MemoryLab-Grown Blood Vessels Could Be Big Medical AdvanceOnly Spoken Words Processed in Newly Discovered Brain RegionSmall Trial Provides New Hope Against Parkinson's DiseaseInsomnia May Be in Your Genes'Miracle' Young Blood Infusion Treatments Unproven, Potentially Harmful: FDAPossible Parkinson's 'Pandemic' Looms: ReportScience Puzzling Out Differences in Gut Bacteria Around the World'Mind-Reading' AI Turns Thoughts Into Spoken WordsEat What You Want and Still Stay Slim? Thank Your GenesGood News, Bad News on Levodopa for Parkinson's DiseaseNature or Nurture? Twins Study Helps Sort Out Genes' Role in DiseaseBeing Bullied May Alter the Teen BrainFDA Warns Companies on Dangerous, Unapproved Stem Cell TreatmentsGene Tweaking Prevented Obesity in MiceApproach That New Gene Testing Kit With CautionResearch on Almost 2,000 Brains Brings Insight Into Mental IllnessRestoring Hair Growth on Scarred Skin? Mouse Study Could Show the WayParkinson's Gene Therapy Wires New Brain CircuitsNext for Disabling Back Pain? New Discs From Patients' Own CellsSkin 'Glow' Test Might Someday Spot Disease Risk EarlyComputer-Brain Link Helps 'Locked In' People Chat, Surf WebCould a Natural Protein Help Fight Obesity?Blood Test May One Day Help Track Concussion RecoveryThe Bigger the Brain, the Bigger the Tumor Risk?Gene Therapy for Parkinson's Symptoms Shows PromiseCould Same-Sex Couples Have Babies With Shared DNA? Study Hints It's PossibleMany Americans Curious, But Wary, About Gene TestingAHA: New Report Explores Genes Behind Congenital Heart DiseaseScientists Find 500 More Genes That Influence Blood PressureALS Affects the Mind, Not Just the BodyScientists Finally Get Around to Finding Procrastination's Home in the BrainGene 'Editing' in Dog Study Shows Promise for Kids With Muscular DystrophyGut Enzyme Could Help Solve U.S. Blood Shortages
Questions and AnswersLinksBook Reviews
Related Topics

Medical Disorders
Mental Disorders
Mental Health Professions

Small Trial Provides New Hope Against Parkinson's Disease

HealthDay News
by -- E.J. Mundell
Updated: Mar 1st 2019

new article illustration

FRIDAY, March 1, 2019 (HealthDay News) -- It may be possible to restore brain cells damaged by Parkinson's disease and reverse a patient's condition, something no current treatment can do, according to British researchers who conducted potentially groundbreaking clinical trials.

They cautioned the trial was small -- just 41 patients -- and the research is still in its early days. But the results of the approach, which delivers special "growth factor" proteins to restore failing brain cells, are very promising.

"The spatial and relative magnitude of the improvement in the brain scans is beyond anything seen previously in trials of surgically delivered growth-factor treatments for Parkinson's," principal investigator Dr. Alan Whone said in a news release from Parkinson's UK, which helped fund the study.

"This represents some of the most compelling evidence yet that we may have a means to possibly reawaken and restore the dopamine brain cells that are gradually destroyed in Parkinson's," he said.

One Parkinson's expert in the United States was cautiously optimistic about this cellular "reawakening."

"While on some measures this biological change did not correlate with improved symptoms, on other 'secondary' goals there was indeed a highly positive effect on patients' lives," noted Dr. Michael Schulder. He is vice chair of neurosurgery at North Shore University Hospital in Manhasset, N.Y.

"This trial should be the beginning and not the end of further efforts to harness the regenerative potential of [this therapeutic approach] to cure people with Parkinson's disease," Schulder said.

In the trial, Whone and his colleagues focused on a naturally occurring protein in the brain called Glial Cell Line Derived Neurotrophic Factor (GDNF). It was thought that boosting GDNF in brain tissue might help regenerate dying brain cells in people with Parkinson's -- and thereby reverse the condition.

Of course, the human brain is sequestered from the rest of the body by a natural defense called the blood-brain barrier, so delivering GDNF to the brain poses a problem.

In the trial, the British team used robot-assisted surgery to place four tubes into the brains of six Parkinson's patients so that GDNF could bypass this barrier and be infused directly to affected brain areas.

Once the safety of the procedure was ascertained, the trial was expanded to include 35 more patients.

Half of these patients received GDNF and half received a placebo. After the first nine months, patients in both groups were then offered GDNF for a further nine months.

At the nine-month point of follow-up, trial results were mixed. While there were some encouraging signs of improvement in patients who received GDNF, there were no significant differences between them and the placebo group on any assessments of Parkinson's symptoms.

However, a comparison of brain scans conducted before the trial and then nine months after showed that GDNF did seem to be healing the damage to dopamine-producing brain cells.

Nine months after therapy, patients who received GDNF experienced a 100 percent improvement in a key area of the brain affected by Parkinson's -- suggesting the treatment was starting to reawaken and restore damaged brain cells, the researchers said.

The real change came 18 months after the treatment, when all participants had received GDNF.

At this point, both groups showed moderate to large improvements in their Parkinson's symptoms, compared to before the study.

This indicates that the treatment might indeed have long-term beneficial effects, Whone's team said.

However, Whone cautioned that at the 18-month point there was no longer a comparison group (both groups were now receiving GDNF). Also, the trial was no longer "blinded" -- meaning all of the patients now knew they were receiving GDNF. That makes it tougher to rule out a placebo effect.

Therefore, the findings at 18 months need to be viewed with caution, the researchers said.

As to why symptoms didn't seem to be affected by the therapy at nine months, "it may be that the effects on symptoms lag behind the improvement in the brain scans, so a longer double-blind trial may have produced a clearer effect," Whone suggested.

"It's also possible that a higher dose of GDNF would have been more effective, or that participants at an earlier stage of the condition would have responded better," he theorized.

"This is why it's essential to continue research exploring this treatment further -- GDNF continues to hold potential to improve the lives of people with Parkinson's," Whone added.

Schulder agreed.

"Brain imaging showed that the GDNF appeared to have brought about regeneration of the key cells whose death leads to the progressive symptoms of Parkinson's disease," he said, so further trials are warranted.

Arthur Roach directs research at Parkinson's UK. In the news release, he said that "while the results are not clear-cut, the study has still been a resounding success.

"It has advanced our understanding of the potential effects of GDNF on damaged brain cells, shown that delivering a therapy in this way is feasible and that it is possible to deliver drugs with precision to the brain," Roach said.

The results were published Feb. 26 in the journal Brain and the Journal of Parkinson's Disease.

More information

The Parkinson's Foundation has more on Parkinson's disease.